High Strength Steel for Steel Constructions

Ronny Willms
AG der Dillinger Hüttenwerke
CONTENT

Introduction
Delivery Conditions
- AR
- N / NE
- Q + T
- TM

Advantages of TM
- Processing
- Economics

Examples
High strength steel – What’s that?

End of 1920: Introduction of the steel grade St52 (S355) for bridge-building (Prof. Klöppel)

→ St52 was called a high strength steel for a long period

Now:

S355 is a standard material for bridge-building

→ Definition of „high strength“ depends on the technical development

Today´s Definition: high strength steel

⇔ Steel with $R_{eH} > 355$ MPa
Introduction

High strength steel

Weight reduction

Economical processing
DELIVERY CONDITIONS

AR TM Q+T N
Delivery Conditions

Process Diagram

- **Temperature**
 - γ_{rec}
 - γ_{not_rec}
 - $\alpha + \gamma$
 - α

- **Time**
 - "as rolled" ("AR")
 - A_{c3}
 - T_{N}
 - A_{r3}
 - M_{S}
 - A_{r1}
 - T_{M} (γ)
 - T_{M} ($\gamma + \alpha$)
 - ACC
 - TM+ ACC
 - TM+ DQ, QST

- **Steps**
 - A: Hot Rolling
 - B: Air
 - C: Water
 - D: TM (γ)
 - E: TM ($\gamma + \alpha$)
 - F: ACC
 - G: TM+ ACC

- **Notations**
 - "TM(CP)"
 - Time axis labels: N, Q

03.12.2009 Dillinger Colloquium Constructional Steelwork 8
Delivery Conditions

AR

hot rolling
AR As Rolled

Classical rolling

Transition area:
\(\alpha\text{-Fe} - \gamma\text{-Fe} \)

Cooling on calm air

Delivery Conditions

1100 - 1200°C
900°C
700°C

03.12.2009 Dillinger Colloquium Constructional Steelwork
Delivery Conditions

hot-rolling + Normalising
Normalising

Classical rolling

Cooling on calm air

Transition area: α-Fe - γ-Fe

Delivery Conditions
Normalising rolling

Phase 1

1100 - 1200°C

Phase 2

(T > 900°C)

Transition area: \(\alpha\)-Fe - \(\gamma\)-Fe

Definition: After an additional normalising in the furnace, the properties of a normalised rolled plate must fulfil the mechanical requirements of the standard.

Cooling on calm air
hot-rolling Quenching + Tempering
Q+T → Quenching + Tempering

Classical rolling

Quenching

Tempering

core

surface

Delivery Conditions
Q+T Effect of quenching

[℃]

- **1390**
 - Carbon solved in the lattice
 - Austenite

- **910**
 - Ferrite + Cementite (Carbon can leave the lattice)
 - Martensite (Carbon stays in the lattice, distorted structure)

Delivery Conditions

- **Fast cooling:**
 - Ferrite + Perlite
 - Martensite

- **Slow cooling:**
 - Ferrite + Perlite
Q+T Effect of tempering

Charpy-V [J] vs. Temperature [°C]

- A4
- A3
- A2
- A1
- quenched
Q+T Effect of tempering

![Graph showing the effect of tempering on strength](image)

- **Delivery Conditions**
- **Strength [MPa]**
- **Temper-Parameter**

<table>
<thead>
<tr>
<th>Temper-Parameter</th>
<th>Yield point</th>
<th>Ultimate strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>quenched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q+T Typical applications

Delivery Conditions
Delivery Conditions

Thermo-Mechanical rolling

Diagram:
- **A:** Hot Rolling
- **B:** Process
- **C:** Delivery Conditions
- **D:** TM
- **E:** TM (γ)
- **F:** TM (γ+α)
- **G:** TM+ ACC
- **Q:** TM+ DQ, QST

Key Points:
- γ_{rec}
- γ_{not-rec}
- α + γ
- “as rolled” ("AR")
- M_{s}
- T_{N}
- Water
- Air
- Ar_{s}
- Ar_{1}
- ACC
- "TM(CP)"

Legend:
- N
- Q

Note:
- Time

03.12.2009 Dillinger Colloquium Constructional Steelwork
Delivery Conditions

TM → **Thermomechanical rolling**

- **Phase 1** (T > 900°C)
- **Phase 2** (T > 700°C) with waiting time
- **Phase 3**
 - **Accelerated cooling with water (ACC)**
 - **Cooling on calm air**

T = Temperature

t = Time
TM Thermomechanical rolling

- **γ (coarse)** recrystallised
- **γ (fine)** formed
- **α**

- Heating
- Grain refinement
- Final rolling
- Accelerated cooling
- Cooling on air
- Tempering
Advantages of TM-steel - Processing

PROPERTIES OF TM-steel:

- TM → Fine grain
- TM → High toughness
- TM → Low carbon content
- TM → Low preheating temperatures

Excellent WELDABILITY
Advantages of TM-steel - Processing

TM ➔ **Fine grain**

Hall-Petch:

- **Grain size ↓**
- **Strength ↑**
- **Toughness ↑**
- **Excellent weldability**
Advantages of TM-steel - Processing

TM High toughness / High safety

Charpy-V [J]

- **S355J2+N** (red circles)
- **S460ML** (blue squares)
- **S690QL** (black triangles)

Temperature [°C]

-120, -100, -80, -60, -40, -20, 0, 20

03.12.2009 Dillinger Colloquium Constructional Steelwork
Advantages of TM-steel - Processing

TM High toughness / High safety

Welding leads to toughness reduction

High toughness in the base material reduces the risk of brittle fracture and gives safety!
Advantages of TM-steel - Processing

TM → **High toughness / High safety**

Example: *Ilverich Rhine Bridge (Germany)*
DI-MC 460 with a thickness up to 100 mm
Charpy tested at -80°C
TM - Low carbon content

<table>
<thead>
<tr>
<th></th>
<th>S 460 NL</th>
<th>Auxiliary Data</th>
<th>S 460 ML</th>
<th>Auxiliary Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc. EN 10025-3</td>
<td></td>
<td></td>
<td>acc. EN 10025-4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>< 0,20</td>
<td>0,17</td>
<td>< 0,16</td>
<td>0,09</td>
</tr>
<tr>
<td>Si</td>
<td>< 0,60</td>
<td>0,45</td>
<td>< 0,60</td>
<td>0,30</td>
</tr>
<tr>
<td>Mn</td>
<td>1,00 - 1,70</td>
<td>1,65</td>
<td>< 1,70</td>
<td>1,50</td>
</tr>
<tr>
<td>P</td>
<td>< 0,030</td>
<td>0,015</td>
<td>< 0,030</td>
<td>0,011</td>
</tr>
<tr>
<td>S</td>
<td>< 0,025</td>
<td>0,010</td>
<td>< 0,025</td>
<td>0,005</td>
</tr>
<tr>
<td>Nb</td>
<td>< 0,05</td>
<td>-</td>
<td>< 0,05</td>
<td>< 0,04</td>
</tr>
<tr>
<td>V</td>
<td>< 0,20</td>
<td>0,17</td>
<td>< 0,12</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Mo</td>
<td>< 0,10</td>
<td>-</td>
<td>< 0,20</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>< 0,80</td>
<td>0,29</td>
<td>< 0,45</td>
<td>0,25</td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td>0,50</td>
<td></td>
<td>0,39</td>
</tr>
<tr>
<td>Pcm</td>
<td></td>
<td>0,29</td>
<td></td>
<td>0,20</td>
</tr>
<tr>
<td>CET</td>
<td></td>
<td>0,34</td>
<td></td>
<td>0,28</td>
</tr>
</tbody>
</table>

Carbon equivalents:

- **CE** = C + Mn/6 + (Cr + Mo + V)/5 + (Ni+Cu)/15
- **Pcm** = C +Si/30 + (Mn + Cu + Cr)/20 + Ni/60 + Mo/15 + V/10 + 5B
- **CET** = C + (Mn + Mo)/10 + (Cr + Cu)/20 + Ni/40

Plate thickness 50 mm

Advantages of TM-steel - Processing
T_M ➔ Low preheating temperatures

EN 1011-2

Recommendations for arc welding of ferritic steels

\[
T_p = 697 \times \text{CET} + 160 \times \tanh\left(\frac{d}{35}\right) + 62 \times \text{HD}^{0.35} + (53 \times \text{CET} - 32) \times Q - 328
\]

- \(T_p \): Preheating temperature [°C]
- \(\text{CET} \): Carbon equivalent [%]: \(\text{CET} = C + (\text{Mn} + \text{Mo})/10 + (\text{Cr} + \text{Cu})/20 + \text{Ni}/40 \)
- \(d \): Plate thickness [mm]
- \(\text{HD} \): Hydrogen content [cm³/100 g]
- \(Q \): Heat input [kJ/mm]

Preheating is necessary to avoid:
- Excessive hardening
- Cold cracking
Advantages of TM-steel - Processing

TM → Low preheating temperatures

Hydrogen content of welding consumable [cm³/100g]

S355M

- Plate thickness [mm]
- 75°C
- 50°C
- 25°C

S460M

- Plate thickness [mm]
- 100°C
- 75°C
- 50°C
- 25°C

Calculated with $Q = 2.5$ kJ/mm (submerged arc welding) and for typical CET’s
Advantages of TM-steel - Economics

TM Cost efficiency – Low preheating

1. Reducing preheating temperatures
 - Gas consumption ↓
 - Heating time ↓

2. Avoiding preheating
 - No installations
 - No setting up time
 - No gas
Advantages of TM-steel - Economics

Cost efficiency – Low preheating

1. Reducing preheating temperatures
 - Gas consumption ↓
 - Heating time ↓

2. Avoiding preheating
 - No installations
 - No setting up time
 - No gas

Often underestimated, but worth to think about
Advantages of TM-steel - Economics

TM ➔ **Cost efficiency – Low preheating**

1. Reducing preheating temperatures
 - Gas consumption ↓
 - Heating time ↓

2. Avoiding preheating
 - No installations
 - No setting up time
 - No gas
 - Biggest potential for saving costs

Often underestimated, but worth to think about
Advantages of TM-steel - Economics

Cost efficiency – Low preheating

- **S355NL** $f_y = 430$ Mpa
- **S355ML** $f_y = 430$ Mpa

Possibility to avoid preheating!
- no gas consumption
- no set-up times
- higher capacity in the work shop

EN 1011-2:

$$T_{pCET} = 750 \times \text{CET} - 150$$

0.01% CET \Leftrightarrow ca. 7.5°C

Graph:

- T_{pCET} vs. Carbon equivalent CET [%]
 - T_{pCET} range: 0 to 250°C
 - Carbon equivalent CET range: 0.2 to 0.5

TM Cost efficiency – Low preheating
Advantages of TM-steel - Economics

TM → Cost efficiency – Low preheating

Sauertal Bridge (Germany)

Box-girder-bridge
Length: 1195 m
Width: 27 m
11 Spans: 75 – 150 m
Tonnage: 13,000 t
Grade: S355J2+N

3000 t > 25 mm thickness
TM Cost efficiency – Low preheating

Alternative:

S355J2+N > S355M
No preheating

Conditions:

- 30,000 h welding time
- 15% for preheating
- 50 €/h labour costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Formula</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Saving preheating times</td>
<td>A = 30,000 h x 15% x 50 €/h</td>
<td>225,000 €</td>
</tr>
<tr>
<td>B) Additional costs S355M (25 €/t)</td>
<td>B = 3,000 x 25 €/t</td>
<td>75,000 €</td>
</tr>
<tr>
<td>BENEFIT</td>
<td>C = A - B</td>
<td>150,000 €</td>
</tr>
</tbody>
</table>
Advantages of TM-steel - Economics

Cost efficiency – Low preheating

Low preheating temperatures are not only a matter of costs! Also in terms of job safety, low preheating temperatures are beneficial!

NO HOT SURFACES / NO HANDLING WITH GAS / BETTER WORKING CONDITIONS
Advantages of TM-steel - Economics

Cost efficiency – High strength TM

- Weight reduction
- Bigger assembling units possible
- Less holding times in the workshop
- Less welding consumables
- Reduction of welding time
- Reduction of testing time

TM

- **S355NL** $f_y = 315$ Mpa
- **S460NL** $f_y = 430$ Mpa

- Plate thickness $\sim t^2$
- Weight reduction
- Bigger assembling units possible
- Less holding times in the workshop
- Less welding consumables
- Reduction of welding time
- Reduction of testing time

Welding costs $\sim t^2$
Advantages of TM-steel - Economics

Cost efficiency – High strength TM

- Weight reduction (ca. 30%)
- Bigger assembling units possible
- Less holding times in the workshop
- Less welding consumables
- Reduction of welding time
- Reduction of testing time
- Avoiding/Reducing preheating
- Better weldability
- High toughness reserves
 => High safety

- TM Cost efficiency – High strength TM

S355NL $f_y = 315$ Mpa

Increasing yield strength

S460NL $f_y = 430$ Mpa

Changing delivery condition

S460ML $f_y = 430$ Mpa
Choosing the right steel

- Strength
- Delivery condition
- Toughness
Choosing the right steel

Strength

Toughness

Delivery condition
Airbus-Hangar (Frankfurt / M.)

- TM-Steel S460ML
- constant yield strength up to 120 mm
World Financial Center (Shanghai)

- TM-Steel S460M
- thickness up to 100 mm
- constant yield strength
Øresund Bridge (Denmark-Sweden)

- TM-Steel
- S460M/ML up to 80 mm
Thank you for your attention!